73.17.8 problem 8

Internal problem ID [15471]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 8
Date solved : Monday, March 31, 2025 at 01:38:51 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-8*diff(diff(y(x),x),x)+16*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \left (\left (c_4 x +c_3 \right ) {\mathrm e}^{4 x}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 35
ode=D[y[x],{x,4}]-8*D[y[x],{x,2}]+16*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (c_3 e^{4 x}+x \left (c_4 e^{4 x}+c_2\right )+c_1\right ) \]
Sympy. Time used: 0.108 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(16*y(x) - 8*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- 2 x} + \left (C_{3} + C_{4} x\right ) e^{2 x} \]