Internal
problem
ID
[15463]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.4
(d)
Date
solved
:
Monday, March 31, 2025 at 01:38:36 PM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+6*x^3*diff(diff(diff(y(x),x),x),x)-3*x^2*diff(diff(y(x),x),x)-9*x*diff(y(x),x)+9*y(x) = 12*x*sin(x^2); dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+6*x^3*D[y[x],{x,3}]-3*x^2*D[y[x],{x,2}]-9*x*D[y[x],x]+9*y[x]==12*x*Sin[x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 6*x**3*Derivative(y(x), (x, 3)) - 3*x**2*Derivative(y(x), (x, 2)) - 12*x*sin(x**2) - 9*x*Derivative(y(x), x) + 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)