Internal
problem
ID
[15446]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.1
(e)
Date
solved
:
Monday, March 31, 2025 at 01:38:02 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = (24*x^2+2)*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==(24*x^2+2)*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(24*x**2 + 2)*exp(2*x) + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)