73.15.32 problem 22.10 (e)

Internal problem ID [15392]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.10 (e)
Date solved : Monday, March 31, 2025 at 01:36:23 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=24 \sin \left (3 x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+5*y(x) = 24*sin(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-2 x} \sin \left (x \right ) c_2 +{\mathrm e}^{-2 x} \cos \left (x \right ) c_1 -\frac {3 \sin \left (3 x \right )}{5}-\frac {9 \cos \left (3 x \right )}{5} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 41
ode=D[y[x],{x,2}]+4*D[y[x],x]+5*y[x]==24*Sin[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {3}{5} (\sin (3 x)+3 \cos (3 x))+c_2 e^{-2 x} \cos (x)+c_1 e^{-2 x} \sin (x) \]
Sympy. Time used: 0.238 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) - 24*sin(3*x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{- 2 x} - \frac {3 \sin {\left (3 x \right )}}{5} - \frac {9 \cos {\left (3 x \right )}}{5} \]