Internal
problem
ID
[608]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
18
Date
solved
:
Saturday, March 29, 2025 at 05:00:34 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = t*x(t)-y(t)+exp(t)*z(t), diff(y(t),t) = 2*x(t)+t^2*y(t)-z(t), diff(z(t),t) = exp(-t)*x(t)+3*t*y(t)+t^3*z(t)]; dsolve(ode);
ode={D[x[t],t]==t*x[t]-y[t]+Exp[t]*z[t],D[y[t],t]==2*x[t]+t^2y[t]-z[t],D[z[t],t]==Exp[-t]*x[t]+3*t*y[t]+t^3*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-t*x(t) + y(t) - z(t)*exp(t) + Derivative(x(t), t),0),Eq(-t**2*y(t) - 2*x(t) + z(t) + Derivative(y(t), t),0),Eq(-t**3*z(t) - 3*t*y(t) - x(t)*exp(-t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
NotImplementedError :