7.24.6 problem 16

Internal problem ID [606]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.3 (Matrices and linear systems). Problems at page 364
Problem number : 16
Date solved : Saturday, March 29, 2025 at 04:59:15 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )-3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+y \left (t \right )+2 z \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=5 y \left (t \right )-7 z \left (t \right ) \end{align*}

Maple. Time used: 0.502 (sec). Leaf size: 3112
ode:=[diff(x(t),t) = 2*x(t)-3*y(t), diff(y(t),t) = x(t)+y(t)+2*z(t), diff(z(t),t) = 5*y(t)-7*z(t)]; 
dsolve(ode);
 
\begin{align*} \text {Expression too large to display} \\ y \left (t \right ) &= \sin \left (\frac {\left (\left (10196+12 \sqrt {352785}\right )^{{2}/{3}}-376\right ) t \sqrt {3}\, 2^{{1}/{3}}}{24 \left (2549+3 \sqrt {352785}\right )^{{1}/{3}}}\right ) {\mathrm e}^{\frac {\left (376+\left (10196+12 \sqrt {352785}\right )^{{2}/{3}}-16 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}\right ) t}{12 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}}} c_2 +\cos \left (\frac {\left (\left (10196+12 \sqrt {352785}\right )^{{2}/{3}}-376\right ) t \sqrt {3}\, 2^{{1}/{3}}}{24 \left (2549+3 \sqrt {352785}\right )^{{1}/{3}}}\right ) {\mathrm e}^{\frac {\left (376+\left (10196+12 \sqrt {352785}\right )^{{2}/{3}}-16 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}\right ) t}{12 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}}} c_3 +c_1 \,{\mathrm e}^{-\frac {\left (\left (10196+12 \sqrt {352785}\right )^{{2}/{3}}+8 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}+376\right ) t}{6 \left (10196+12 \sqrt {352785}\right )^{{1}/{3}}}} \\ \text {Expression too large to display} \\ \end{align*}
Mathematica. Time used: 0.019 (sec). Leaf size: 526
ode={D[x[t],t]==2*x[t]-3*y[t],D[y[t],t]==x[t]+y[t]+2*z[t],D[z[t],t]==5*y[t]-7*z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -6 c_3 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]-3 c_2 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}+7 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]+c_1 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}+6 \text {$\#$1} e^{\text {$\#$1} t}-17 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ] \\ y(t)\to 2 c_3 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-2 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]+c_1 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}+7 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]+c_2 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}+5 \text {$\#$1} e^{\text {$\#$1} t}-14 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ] \\ z(t)\to 5 c_1 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]+5 c_2 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-2 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ]+c_3 \text {RootSum}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-26 \text {$\#$1}+55\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-3 \text {$\#$1} e^{\text {$\#$1} t}+5 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2+8 \text {$\#$1}-26}\&\right ] \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-2*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) - 2*z(t) + Derivative(y(t), t),0),Eq(-5*y(t) + 7*z(t) + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
Timed Out