Internal
problem
ID
[15348]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
21.
Nonhomogeneous
equations
in
general.
Additional
exercises
page
391
Problem
number
:
21.11
Date
solved
:
Monday, March 31, 2025 at 01:35:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 10*x+12; ic:=y(1) = 6, D(y)(1) = 8; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==10*x+12; ic={y[1]==6,Derivative[1][y][1]==8}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) - 10*x + 6*y(x) - 12,0) ics = {y(1): 6, Subs(Derivative(y(x), x), x, 1): 8} dsolve(ode,func=y(x),ics=ics)