Internal
problem
ID
[15343]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
21.
Nonhomogeneous
equations
in
general.
Additional
exercises
page
391
Problem
number
:
21.6
(ii)
Date
solved
:
Monday, March 31, 2025 at 01:34:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)-8*y(x) = 8*x^2-3; ic:=y(0) = 1, D(y)(0) = -3; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+2*D[y[x],x]-8*y[x]==8*x^2-3; ic={y[0]==1,Derivative[1][y][0] ==-3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**2 - 8*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 3,0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -3} dsolve(ode,func=y(x),ics=ics)