73.13.25 problem 20.4 (a)

Internal problem ID [15332]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.4 (a)
Date solved : Monday, March 31, 2025 at 01:34:38 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{4}+c_2 \,x^{3}+c_3}{x^{2}} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 22
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_3 x^2+\frac {c_1}{x^2}+c_2 x \]
Sympy. Time used: 0.230 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{2}} + C_{2} x + C_{3} x^{2} \]