73.13.17 problem 20.1 (q)

Internal problem ID [15324]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (q)
Date solved : Monday, March 31, 2025 at 01:34:18 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (\ln \left (x \right )\right )+c_2 \cos \left (\ln \left (x \right )\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 24
ode=4*x^2*D[y[x],{x,2}]+8*x*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \cos (\log (x))+c_1 \sin (\log (x))}{\sqrt {x}} \]
Sympy. Time used: 0.203 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) + 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \cos {\left (\log {\left (x \right )} \right )}}{\sqrt {x}} \]