73.13.13 problem 20.1 (m)

Internal problem ID [15320]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (m)
Date solved : Monday, March 31, 2025 at 01:34:11 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=2*x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{x}+\frac {c_2}{\sqrt {x}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=2*x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_2 \sqrt {x}+c_1}{x} \]
Sympy. Time used: 0.163 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + \frac {C_{2}}{\sqrt {x}} \]