Internal
problem
ID
[15320]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
20.
Euler
equations.
Additional
exercises
page
382
Problem
number
:
20.1
(m)
Date
solved
:
Monday, March 31, 2025 at 01:34:11 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=2*x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)