73.13.10 problem 20.1 (j)

Internal problem ID [15317]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (j)
Date solved : Monday, March 31, 2025 at 01:34:05 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }+10 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+10*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_1 \sin \left (3 \ln \left (x \right )\right )+c_2 \cos \left (3 \ln \left (x \right )\right )\right ) \]
Mathematica. Time used: 0.026 (sec). Leaf size: 24
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+10*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x (c_2 \cos (3 \log (x))+c_1 \sin (3 \log (x))) \]
Sympy. Time used: 0.183 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + 10*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} \sin {\left (3 \log {\left (x \right )} \right )} + C_{2} \cos {\left (3 \log {\left (x \right )} \right )}\right ) \]