7.23.13 problem 19

Internal problem ID [599]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.2 (Applications). Problems at page 345
Problem number : 19
Date solved : Saturday, March 29, 2025 at 04:57:39 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-4 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )\\ \frac {d}{d t}z \left (t \right )&=-4 y \left (t \right )+4 z \left (t \right ) \end{align*}

Maple. Time used: 0.214 (sec). Leaf size: 910
ode:=[diff(x(t),t) = x(t)-2*y(t), diff(y(t),t) = -4*x(t)+4*y(t)-2*z(t), diff(z(t),t) = -4*y(t)+4*z(t)]; 
dsolve(ode);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.019 (sec). Leaf size: 527
ode={D[x[t],t]==x[t]-2*y[t],D[y[t],t]==-4*x[t]+4*y[t]-2*z[t],D[z[t],t]==-4*y[t]+4*z[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to 4 c_3 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]-2 c_2 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-4 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]+c_1 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-8 \text {$\#$1} e^{\text {$\#$1} t}+8 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ] \\ y(t)\to -4 c_1 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-4 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]-2 c_3 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]+c_2 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-5 \text {$\#$1} e^{\text {$\#$1} t}+4 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ] \\ z(t)\to 16 c_1 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]-4 c_2 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1} e^{\text {$\#$1} t}-e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ]+c_3 \text {RootSum}\left [\text {$\#$1}^3-9 \text {$\#$1}^2+8 \text {$\#$1}+24\&,\frac {\text {$\#$1}^2 e^{\text {$\#$1} t}-5 \text {$\#$1} e^{\text {$\#$1} t}-4 e^{\text {$\#$1} t}}{3 \text {$\#$1}^2-18 \text {$\#$1}+8}\&\right ] \\ \end{align*}
Sympy. Time used: 14.988 (sec). Leaf size: 1574
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(4*x(t) - 4*y(t) + 2*z(t) + Derivative(y(t), t),0),Eq(4*y(t) - 4*z(t) + Derivative(z(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
 
\[ \text {Solution too large to show} \]