Internal
problem
ID
[15195]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.1
(e)
Date
solved
:
Monday, March 31, 2025 at 01:31:02 PM
CAS
classification
:
[_linear]
ode:=x*diff(y(x),x)+3*y(x) = exp(2*x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]+3*y[x]==Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + 3*y(x) - exp(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)