7.22.11 problem 26
Internal
problem
ID
[586]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.1
(First
order
systems
and
applications).
Problems
at
page
335
Problem
number
:
26
Date
solved
:
Saturday, March 29, 2025 at 04:57:19 PM
CAS
classification
:
system_of_ODEs
\begin{align*} 10 \frac {d}{d t}x_{1} \left (t \right )&=-x_{1} \left (t \right )+x_{3} \left (t \right )\\ 10 \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-x_{2} \left (t \right )\\ 10 \frac {d}{d t}x_{3} \left (t \right )&=x_{2} \left (t \right )-x_{3} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.155 (sec). Leaf size: 166
ode:=[10*diff(x__1(t),t) = -x__1(t)+x__3(t), 10*diff(x__2(t),t) = x__1(t)-x__2(t), 10*diff(x__3(t),t) = x__2(t)-x__3(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= c_1 +c_2 \,{\mathrm e}^{-\frac {3 t}{20}} \sin \left (\frac {\sqrt {3}\, t}{20}\right )+c_3 \,{\mathrm e}^{-\frac {3 t}{20}} \cos \left (\frac {\sqrt {3}\, t}{20}\right ) \\
x_{2} \left (t \right ) &= -\frac {c_2 \,{\mathrm e}^{-\frac {3 t}{20}} \sin \left (\frac {\sqrt {3}\, t}{20}\right )}{2}-\frac {c_2 \,{\mathrm e}^{-\frac {3 t}{20}} \sqrt {3}\, \cos \left (\frac {\sqrt {3}\, t}{20}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {3 t}{20}} \cos \left (\frac {\sqrt {3}\, t}{20}\right )}{2}+\frac {c_3 \,{\mathrm e}^{-\frac {3 t}{20}} \sqrt {3}\, \sin \left (\frac {\sqrt {3}\, t}{20}\right )}{2}+c_1 \\
x_{3} \left (t \right ) &= -\frac {c_2 \,{\mathrm e}^{-\frac {3 t}{20}} \sin \left (\frac {\sqrt {3}\, t}{20}\right )}{2}+\frac {c_2 \,{\mathrm e}^{-\frac {3 t}{20}} \sqrt {3}\, \cos \left (\frac {\sqrt {3}\, t}{20}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {3 t}{20}} \cos \left (\frac {\sqrt {3}\, t}{20}\right )}{2}-\frac {c_3 \,{\mathrm e}^{-\frac {3 t}{20}} \sqrt {3}\, \sin \left (\frac {\sqrt {3}\, t}{20}\right )}{2}+c_1 \\
\end{align*}
✓ Mathematica. Time used: 0.029 (sec). Leaf size: 235
ode={10*D[x1[t],t]==-x1[t]+x3[t],10*D[x2[t],t]==x1[t]-x2[t],10*D[x3[t],t]==x2[t]-x3[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to \frac {1}{3} e^{-3 t/20} \left ((c_1+c_2+c_3) e^{3 t/20}+(2 c_1-c_2-c_3) \cos \left (\frac {\sqrt {3} t}{20}\right )-\sqrt {3} (c_2-c_3) \sin \left (\frac {\sqrt {3} t}{20}\right )\right ) \\
\text {x2}(t)\to \frac {1}{3} e^{-3 t/20} \left ((c_1+c_2+c_3) e^{3 t/20}-(c_1-2 c_2+c_3) \cos \left (\frac {\sqrt {3} t}{20}\right )+\sqrt {3} (c_1-c_3) \sin \left (\frac {\sqrt {3} t}{20}\right )\right ) \\
\text {x3}(t)\to \frac {1}{3} e^{-3 t/20} \left ((c_1+c_2+c_3) e^{3 t/20}-(c_1+c_2-2 c_3) \cos \left (\frac {\sqrt {3} t}{20}\right )-\sqrt {3} (c_1-c_2) \sin \left (\frac {\sqrt {3} t}{20}\right )\right ) \\
\end{align*}
✓ Sympy. Time used: 0.261 (sec). Leaf size: 163
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
ode=[Eq(x__1(t) - x__3(t) + 10*Derivative(x__1(t), t),0),Eq(-x__1(t) + x__2(t) + 10*Derivative(x__2(t), t),0),Eq(-x__2(t) + x__3(t) + 10*Derivative(x__3(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = C_{1} - \left (\frac {C_{2}}{2} - \frac {\sqrt {3} C_{3}}{2}\right ) e^{- \frac {3 t}{20}} \cos {\left (\frac {\sqrt {3} t}{20} \right )} + \left (\frac {\sqrt {3} C_{2}}{2} + \frac {C_{3}}{2}\right ) e^{- \frac {3 t}{20}} \sin {\left (\frac {\sqrt {3} t}{20} \right )}, \ x^{2}{\left (t \right )} = C_{1} - \left (\frac {C_{2}}{2} + \frac {\sqrt {3} C_{3}}{2}\right ) e^{- \frac {3 t}{20}} \cos {\left (\frac {\sqrt {3} t}{20} \right )} - \left (\frac {\sqrt {3} C_{2}}{2} - \frac {C_{3}}{2}\right ) e^{- \frac {3 t}{20}} \sin {\left (\frac {\sqrt {3} t}{20} \right )}, \ x^{3}{\left (t \right )} = C_{1} + C_{2} e^{- \frac {3 t}{20}} \cos {\left (\frac {\sqrt {3} t}{20} \right )} - C_{3} e^{- \frac {3 t}{20}} \sin {\left (\frac {\sqrt {3} t}{20} \right )}\right ]
\]