Internal
problem
ID
[15147]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
13.
Higher
order
equations:
Extending
first
order
concepts.
Additional
exercises
page
259
Problem
number
:
13.2
(d)
Date
solved
:
Monday, March 31, 2025 at 01:29:17 PM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
ode:=x*diff(diff(y(x),x),x) = diff(y(x),x)^2-diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]==(D[y[x],x])^2-D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)