Internal
problem
ID
[15063]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(k)
Date
solved
:
Monday, March 31, 2025 at 01:20:38 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=-y(x)+x*diff(y(x),x) = (x*y(x)+x^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]==Sqrt[x*y[x]+x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + x*y(x)) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)