73.5.17 problem 6.7 (e)

Internal problem ID [15057]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 6. Simplifying through simplifiction. Additional exercises. page 114
Problem number : 6.7 (e)
Date solved : Monday, March 31, 2025 at 01:18:02 PM
CAS classification : [[_homogeneous, `class C`], [_Abel, `2nd type`, `class C`], _dAlembert]

\begin{align*} \left (y-x \right ) y^{\prime }&=1 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 17
ode:=(y(x)-x)*diff(y(x),x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{-x -1}\right )+x +1 \]
Mathematica. Time used: 0.027 (sec). Leaf size: 20
ode=(y[x]-x)*D[y[x],x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to W\left (c_1 \left (-e^{-x-1}\right )\right )+x+1 \]
Sympy. Time used: 0.651 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x + y(x))*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x + W\left (C_{1} e^{- x - 1}\right ) + 1 \]