Internal
problem
ID
[15039]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
5.
LINEAR
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
103
Problem
number
:
5.4
(b)
Date
solved
:
Monday, March 31, 2025 at 01:13:46 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=x^2*diff(y(x),x)+x*y(x) = x^(1/2)*sin(x); ic:=y(2) = 5; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],x]+x*y[x]==Sqrt[x]*Sin[x]; ic={y[2]==5}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x)*sin(x) + x**2*Derivative(y(x), x) + x*y(x),0) ics = {y(2): 5} dsolve(ode,func=y(x),ics=ics)