73.4.14 problem 5.2 (d)

Internal problem ID [15025]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.2 (d)
Date solved : Monday, March 31, 2025 at 01:13:10 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }-2 x y&=x \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x)-2*x*y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {1}{2}+{\mathrm e}^{x^{2}} c_1 \]
Mathematica. Time used: 0.026 (sec). Leaf size: 24
ode=D[y[x],x]-2*x*y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{2}+c_1 e^{x^2} \\ y(x)\to -\frac {1}{2} \\ \end{align*}
Sympy. Time used: 0.302 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) - x + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x^{2}} - \frac {1}{2} \]