Internal
problem
ID
[15012]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
5.
LINEAR
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
103
Problem
number
:
5.1
(a)
Date
solved
:
Monday, March 31, 2025 at 01:12:17 PM
CAS
classification
:
[[_linear, `class A`]]
ode:=x^2*diff(y(x),x)+3*x^2*y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]+3*x^2*y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*y(x) + x**2*Derivative(y(x), x) - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)