73.3.40 problem 4.7 (n)

Internal problem ID [15003]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 4. SEPARABLE FIRST ORDER EQUATIONS. Additional exercises. page 90
Problem number : 4.7 (n)
Date solved : Monday, March 31, 2025 at 01:11:51 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }-3 x^{2} y^{2}&=3 x^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 12
ode:=diff(y(x),x)-3*x^2*y(x)^2 = 3*x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (x^{3}+3 c_1 \right ) \]
Mathematica. Time used: 0.229 (sec). Leaf size: 43
ode=D[y[x],x]-3*x^2*y[x]^2==3*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [x^3+c_1\right ] \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.288 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**2*y(x)**2 - 3*x**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} + x^{3} \right )} \]