73.3.33 problem 4.7 (g)

Internal problem ID [14996]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 4. SEPARABLE FIRST ORDER EQUATIONS. Additional exercises. page 90
Problem number : 4.7 (g)
Date solved : Monday, March 31, 2025 at 01:11:20 PM
CAS classification : [_separable]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=y^{2}+1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 9
ode:=(x^2+1)*diff(y(x),x) = 1+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\arctan \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.231 (sec). Leaf size: 55
ode=(x^2+1)*D[y[x],x]==y[x]^2+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [\int _1^x\frac {1}{K[2]^2+1}dK[2]+c_1\right ] \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.259 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x) - y(x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} + \operatorname {atan}{\left (x \right )} \right )} \]