73.2.11 problem 3.6

Internal problem ID [14963]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 3. Some basics about First order equations. Additional exercises. page 63
Problem number : 3.6
Date solved : Monday, March 31, 2025 at 01:09:05 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=2 \sqrt {y} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.015 (sec). Leaf size: 5
ode:=diff(y(x),x) = 2*y(x)^(1/2); 
ic:=y(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[x],x]==2*Sqrt[y[x]]; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 0 \]
Sympy. Time used: 0.197 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*sqrt(y(x)) + Derivative(y(x), x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} - 2 x + 1 \]