Internal
problem
ID
[14895]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
6.
Laplace
transform.
Section
6.3
page
600
Problem
number
:
34
Date
solved
:
Monday, March 31, 2025 at 01:01:42 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*y(t) = piecewise(0 <= t and t < 1,t,1 <= t,1); ic:=y(0) = 2, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*y[t]==Piecewise[{{t,0<=t<1},{1,t>=1}}]; ic={y[0]==2,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((t, (t >= 0) & (t < 1)), (1, t >= 1)) + 3*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)