Internal
problem
ID
[14893]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
6.
Laplace
transform.
Section
6.3
page
600
Problem
number
:
32
Date
solved
:
Monday, March 31, 2025 at 01:01:36 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*y(t) = Heaviside(t-4)*cos(5*t-20); ic:=y(0) = 0, D(y)(0) = -2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*y[t]==UnitStep[t-4]*Cos[5*(t-4)]; ic={y[0]==0,Derivative[1][y][0] ==-2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*y(t) - cos(5*t - 20)*Heaviside(t - 4) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): -2} dsolve(ode,func=y(t),ics=ics)