Internal
problem
ID
[14662]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
1.
First-Order
Differential
Equations.
Exercises
section
1.8
page
121
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 12:51:54 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(t),t)-2*y(t) = 3*exp(-2*t); ic:=y(0) = 10; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]-2*y[t]==3*Exp[-2*t]; ic={y[0]==10}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*y(t) + Derivative(y(t), t) - 3*exp(-2*t),0) ics = {y(0): 10} dsolve(ode,func=y(t),ics=ics)