72.3.11 problem 15

Internal problem ID [14604]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number : 15
Date solved : Monday, March 31, 2025 at 12:40:13 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sqrt {y} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 11
ode:=diff(y(t),t) = y(t)^(1/2); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {\left (t +2\right )^{2}}{4} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 14
ode=D[y[t],t]==Sqrt[ y[t] ]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{4} (t+2)^2 \]
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-sqrt(y(t)) + Derivative(y(t), t),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : Initial conditions produced too many solutions for constants