72.2.16 problem 16 (i)

Internal problem ID [14580]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number : 16 (i)
Date solved : Monday, March 31, 2025 at 12:35:18 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{2}+y \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=diff(y(t),t) = y(t)^2+y(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{-1+{\mathrm e}^{-t} c_1} \]
Mathematica. Time used: 0.203 (sec). Leaf size: 40
ode=D[y[t],t]==y[t]^2+y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] (K[1]+1)}dK[1]\&\right ][t+c_1] \\ y(t)\to -1 \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.271 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**2 - y(t) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {1}{C_{1} e^{- t} - 1} \]