Internal
problem
ID
[14480]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.5,
page
273
Problem
number
:
2
Date
solved
:
Monday, March 31, 2025 at 12:28:15 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(x),x)-3*y(x) = Dirac(x-1)+2*Heaviside(x-2); ic:=y(0) = 0; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],x]-3*y[x]==DiracDelta[x-1]+2*UnitStep[x-2]; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Dirac(x - 1) - 3*y(x) - 2*Heaviside(x - 2) + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)