Internal
problem
ID
[14472]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.4,
page
265
Problem
number
:
4
(a)
Date
solved
:
Monday, March 31, 2025 at 12:27:56 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(x),x)+2*y(x) = piecewise(0 <= x and x < 1,2,1 <= x,1); ic:=y(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],x]+2*y[x]==Piecewise[{ {2,0<=x<1},{1,1<=x}}]; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Piecewise((2, (x >= 0) & (x < 1)), (1, x >= 1)) + 2*y(x) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)