Internal
problem
ID
[14421]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.1,
page
186
Problem
number
:
15
Date
solved
:
Monday, March 31, 2025 at 12:26:42 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; ic:=y(1) = 2, D(y)(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={y[1]==2,Derivative[1][y][1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): -1} dsolve(ode,func=y(x),ics=ics)