Internal
problem
ID
[14417]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.1,
page
186
Problem
number
:
9
Date
solved
:
Monday, March 31, 2025 at 12:26:35 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)