71.8.30 problem 11 (a)

Internal problem ID [14393]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number : 11 (a)
Date solved : Monday, March 31, 2025 at 12:24:39 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {y}{y-x} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2 \end{align*}

Maple. Time used: 0.029 (sec). Leaf size: 7
ode:=diff(y(x),x) = y(x)/(y(x)-x); 
ic:=y(1) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 2 x \]
Mathematica. Time used: 0.051 (sec). Leaf size: 58
ode=D[y[x],x]==y[x]/(y[x]-x); 
ic={y[1]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]-1}{(K[1]-2) K[1]}dK[1]=\int _1^2\frac {K[1]-1}{(K[1]-2) K[1]}dK[1]-\log (x),y(x)\right ] \]
Sympy. Time used: 0.966 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)/(-x + y(x)),0) 
ics = {y(1): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x + \sqrt {x^{2}} \]