71.8.17 problem 7 (d)

Internal problem ID [14380]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.4.4, page 115
Problem number : 7 (d)
Date solved : Monday, March 31, 2025 at 12:20:25 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=-\frac {3 x^{2}}{2 y} \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=-1 \end{align*}

Maple. Time used: 0.054 (sec). Leaf size: 11
ode:=diff(y(x),x) = -3/2*x^2/y(x); 
ic:=y(-1) = -1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\left (-x \right )^{{3}/{2}} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 16
ode=D[y[x],x]==-3*x^2/(2*y[x]); 
ic={y[-1]==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\sqrt {-x^3} \]
Sympy. Time used: 0.274 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x**2/(2*y(x)) + Derivative(y(x), x),0) 
ics = {y(-1): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \sqrt {- x^{3}} \]