71.5.2 problem 2

Internal problem ID [14327]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 2. The Initial Value Problem. Exercises 2.3.1, page 57
Problem number : 2
Date solved : Monday, March 31, 2025 at 12:17:57 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x +\frac {1}{x} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 13
ode:=diff(y(x),x) = x+1/x; 
ic:=y(1) = 2; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+\ln \left (x \right )+\frac {3}{2} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 18
ode=D[y[x],x]==x+1/x; 
ic={y[1]==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \left (x^2+2 \log (x)+3\right ) \]
Sympy. Time used: 0.233 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + Derivative(y(x), x) - 1/x,0) 
ics = {y(1): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{2} + \log {\left (x \right )} + \frac {3}{2} \]