Internal
problem
ID
[14325]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
2.
The
Initial
Value
Problem.
Exercises
2.2,
page
53
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 12:17:52 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
With initial conditions
ode:=diff(y(x),x) = -1/2*x+1/2*(x^2+4*y(x))^(1/2); ic:=y(6) = -9; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(-x+Sqrt[x^2+4*y[x]])/2; ic={y[6]==-9}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/2 - sqrt(x**2 + 4*y(x))/2 + Derivative(y(x), x),0) ics = {y(6): -9} dsolve(ode,func=y(x),ics=ics)