71.2.14 problem 10 (b)

Internal problem ID [14275]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 1. Introduction. Exercises 1.3, page 27
Problem number : 10 (b)
Date solved : Monday, March 31, 2025 at 12:15:04 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=4\\ y^{\prime }\left (1\right )&=0 \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 0; 
ic:=y(2) = 4, D(y)(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 2 x^{3}-3 x^{2} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 14
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0; 
ic={Derivative[1][y][1]==0,y[2]==4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x^2 (2 x-3) \]
Sympy. Time used: 0.167 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) 
ics = {y(2): 4, Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (2 x - 3\right ) \]