71.1.10 problem 24

Internal problem ID [14248]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 1. Introduction. Exercises page 14
Problem number : 24
Date solved : Monday, March 31, 2025 at 12:14:09 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-y^{2}&=1 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=diff(y(x),x)-y(x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (x +c_1 \right ) \]
Mathematica. Time used: 0.176 (sec). Leaf size: 41
ode=D[y[x],x]-y[x]^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ][x+c_1] \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.272 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - \tan {\left (C_{1} - x \right )} \]