Internal
problem
ID
[14237]
Book
:
Nonlinear
Ordinary
Differential
Equations
by
D.W.Jordna
and
P.Smith.
4th
edition
1999.
Oxford
Univ.
Press.
NY
Section
:
Chapter
2.
Plane
autonomous
systems
and
linearization.
Problems
page
79
Problem
number
:
2.4
(v)
Date
solved
:
Monday, March 31, 2025 at 12:13:44 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
ode:=diff(diff(x(t),t),t) = (2*cos(x(t))-1)*sin(x(t)); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]==(2*Cos[x[t]]-1)*Sin[x[t]]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq((1 - 2*cos(x(t)))*sin(x(t)) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)
Timed Out