Internal
problem
ID
[489]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
3.
Power
series
methods.
Section
3.3
(Regular
singular
points).
Problems
at
page
231
Problem
number
:
33
Date
solved
:
Saturday, March 29, 2025 at 04:54:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(5*x^3+2*x^2)*diff(diff(y(x),x),x)+(-x^2+3*x)*diff(y(x),x)-(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(2*x^2+5*x^3)*D[y[x],{x,2}]+(3*x-x^2)*D[y[x],x]-(1+x)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - 1)*y(x) + (-x**2 + 3*x)*Derivative(y(x), x) + (5*x**3 + 2*x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)