Internal
problem
ID
[14146]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
91
Date
solved
:
Monday, March 31, 2025 at 12:10:42 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
ode:=y(x) = x*(1+diff(y(x),x))+diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=y[x]==x*(1+D[y[x],x])+(D[y[x],x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(Derivative(y(x), x) + 1) + y(x) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)