Internal
problem
ID
[14075]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
3
Bessel
functions.
Problems
page
89
Problem
number
:
Problem
3.7(a)
Date
solved
:
Monday, March 31, 2025 at 12:02:44 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=diff(diff(y(x),x),x)-x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False