68.1.16 problem Problem 1.13

Internal problem ID [14074]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 1 VARIABLE COEFFICIENT, SECOND ORDER DIFFERENTIAL EQUATIONS. Problems page 28
Problem number : Problem 1.13
Date solved : Monday, March 31, 2025 at 12:02:42 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.026 (sec). Leaf size: 60
Order:=6; 
ode:=x*(x-1)*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (x +2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \ln \left (x \right ) c_2 +\left (1+3 x +5 x^{2}+7 x^{3}+9 x^{4}+11 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2 \]
Mathematica. Time used: 0.037 (sec). Leaf size: 63
ode=x*(x-1)*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (x^4+x^3+x^2+\left (4 x^3+3 x^2+2 x+1\right ) x \log (x)+x+1\right )+c_2 \left (5 x^5+4 x^4+3 x^3+2 x^2+x\right ) \]
Sympy. Time used: 0.980 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 1)*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x \left (\frac {27 x^{4}}{40} - \frac {9 x^{3}}{8} + \frac {3 x^{2}}{2} - \frac {3 x}{2} + 1\right ) + C_{1} + O\left (x^{6}\right ) \]