7.15.22 problem 22

Internal problem ID [478]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 22
Date solved : Saturday, March 29, 2025 at 04:54:36 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (-2 x^{2}+3\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 36
Order:=6; 
ode:=2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-(-2*x^2+3)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_2 \,x^{{5}/{2}} \left (1-\frac {1}{9} x^{2}+\frac {1}{234} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_1 \left (1+x^{2}-\frac {1}{6} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 46
ode=2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-(3-2*x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_2 \left (-\frac {x^4}{6}+x^2+1\right )}{x}+c_1 \left (\frac {x^4}{234}-\frac {x^2}{9}+1\right ) x^{3/2} \]
Sympy. Time used: 0.932 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - (3 - 2*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x^{\frac {3}{2}} \left (1 - \frac {x^{2}}{9}\right ) + \frac {C_{1} \left (\frac {x^{6}}{126} - \frac {x^{4}}{6} + x^{2} + 1\right )}{x} + O\left (x^{6}\right ) \]