Internal
problem
ID
[14066]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
1
VARIABLE
COEFFICIENT,
SECOND
ORDER
DIFFERENTIAL
EQUATIONS.
Problems
page
28
Problem
number
:
Problem
1.6(b)
Date
solved
:
Monday, March 31, 2025 at 12:02:30 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*(1+x)*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*(1+x)*D[y[x],x]-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(x + 1)*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)