Internal
problem
ID
[14064]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
1
VARIABLE
COEFFICIENT,
SECOND
ORDER
DIFFERENTIAL
EQUATIONS.
Problems
page
28
Problem
number
:
Problem
1.3(d)
Date
solved
:
Monday, March 31, 2025 at 12:02:26 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x) = f(x); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==f[x]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-f(x) + y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)