Internal
problem
ID
[14039]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.4
Reduction
to
a
single
ODE.
Problems
page
415
Problem
number
:
Problem
4(f)
Date
solved
:
Monday, March 31, 2025 at 08:22:40 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)-4*diff(y(t),t) = 0, 2*diff(x(t),t)-3*diff(y(t),t) = y(t)+t]; dsolve(ode);
ode={D[x[t],t]-4*D[y[t],t]==0,2*D[x[t],t]-3*D[y[t],t]==y[t]+t}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(Derivative(x(t), t) - 4*Derivative(y(t), t),0),Eq(-t - y(t) + 2*Derivative(x(t), t) - 3*Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)