Internal
problem
ID
[14035]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.4
Reduction
to
a
single
ODE.
Problems
page
415
Problem
number
:
Problem
4(b)
Date
solved
:
Monday, March 31, 2025 at 08:22:34 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+2*diff(y(t),t) = t, diff(x(t),t)-diff(y(t),t) = x(t)+y(t)]; dsolve(ode);
ode={D[x[t],t]+2*D[y[t],t]==t,D[x[t],t]-D[y[t],t]==x[t]+y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-t + Derivative(x(t), t) + 2*Derivative(y(t), t),0),Eq(-x(t) - y(t) + Derivative(x(t), t) - Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)