7.15.18 problem 18

Internal problem ID [474]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 18
Date solved : Saturday, March 29, 2025 at 04:54:30 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x y^{\prime \prime }+3 y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 44
Order:=6; 
ode:=2*x*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+x +\frac {1}{6} x^{2}+\frac {1}{90} x^{3}+\frac {1}{2520} x^{4}+\frac {1}{113400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}}+c_2 \left (1+\frac {1}{3} x +\frac {1}{30} x^{2}+\frac {1}{630} x^{3}+\frac {1}{22680} x^{4}+\frac {1}{1247400} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 81
ode=2*x*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{1247400}+\frac {x^4}{22680}+\frac {x^3}{630}+\frac {x^2}{30}+\frac {x}{3}+1\right )+\frac {c_2 \left (\frac {x^5}{113400}+\frac {x^4}{2520}+\frac {x^3}{90}+\frac {x^2}{6}+x+1\right )}{\sqrt {x}} \]
Sympy. Time used: 0.843 (sec). Leaf size: 63
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), (x, 2)) - y(x) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{5}}{1247400} + \frac {x^{4}}{22680} + \frac {x^{3}}{630} + \frac {x^{2}}{30} + \frac {x}{3} + 1\right ) + \frac {C_{1} \left (\frac {x^{5}}{113400} + \frac {x^{4}}{2520} + \frac {x^{3}}{90} + \frac {x^{2}}{6} + x + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]